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In silico veritas
Data-mining and automated discovery: the truth is in there • by John F. Allen

Literacy underpins constitutions, civil
rights and liberties. But E-mail is replacing
the letter; the digital certificate, the written
signature. Printing allows the recording and
dissemination of observations, thoughts
and ideas. But the Internet is competing
with the printed page; the searchable
database with the index of contents. If you
are reading this article online, you may
have retrieved the file because a search
engine found a match to your query, indi-
cating that there is something here you
may wish to know. A contextual, semantic
search will further confirm this and distil the
essence of this article. Searching a genome
database is exactly the same. Just as comput-
ers are transforming the way we communi-
cate and store information, they are changing
the way we discover things worth
communicating. In the future, automated
discovery will generate new knowledge, take
over the process of doing science itself, and
tell us what it is that we need to know and
understand.

The search engines may, by now, be
satisfied with this decoy. So, for those who
read beyond titles and first paragraphs: do
not believe a word of what you have read
so far. The title of this article is irony and
its introduction parody. But they describe

an attitude that seems to be gaining
ground within the scientific community,
namely that computers can do our
thinking for us. I do not share this view. I
rather think that excellent and exciting
science is being done today by people
who depend totally on computers, but
that many are mistaken about the
computers’ role in doing science. My aim
is neither to criticize this science, nor the

reliance on computers in research, but I
claim that knowledge does not arise
de novo from computer-assisted analysis
of biological data. Computers dazzle and
entertain us, but we should not give them

credit for having the ideas in the first
place. The scientist is apt to produce his
conclusion rather in the way that a con-
jurer produces a rabbit out of a hat. I assert
that the conclusion, like the rabbit, was there
all the time. Computerized data analysis just
makes a particularly distracting hat.

Scientists have a record of being
reluctant to describe where, and how,
they get their ideas. The simplest reason may
be that they do not know. Another reason
may be that scientists are commendably
careful to distinguish the results of an
experiment from the preconceptions with
which they designed it. Results are
objective, public statements. Results are
external and inclusive—anyone can
inspect, interpret, repeat and confirm
them. Preconceptions, unlike results, are
subjective—just personal opinion, mere
speculation. Preconceptions are internal
and exclusive parts of our private
thoughts, feelings and hopes. But, without
preconceptions, there would be no way

of deciding what to look for, no motive for
doing the experiment and no basis for
interpreting its results. There is a long
history of pretence that there are no
hypotheses in science, and it has some
distinguished players. I suggest that the
latest examples include in silico discovery,
ab initio structure prediction and data-
mining. I shall choose two examples,
DNA-microarrays and protein structural
prediction, to illustrate this idea.

One of the central processes of biology
is gene expression. Starting with the
brilliant paradigm of the lac operon,
many scientists have asked whether they
can understand an organism’s response to
an environmental change by seeing
whether and how such a change alters
expression of one or more genes. The
potential of global gene expression
profiling—looking at the expression of
many or even all genes in a cell or
organism—is quite intoxicating. New
possibilities are opening up for those who

hitherto laboured with northern blotting
or transcriptional assays using individual,
carefully chosen probes.

Pioneers of DNA-microarrays go
further, and claim that their technique
presents a different way of doing science.
For instance, P.O. Brown and D. Botstein
of Stanford University advocate collecting
microarray data without preconception,
and then exploring it. ‘Exploration means
looking around, observing, describing
and mapping undiscovered territory, not
testing theories or models. The goal is to
discover things we neither knew nor
expected, and to see relationships and
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connections among the elements, whether
previously suspected or not. It follows that
this process is not driven by hypothesis and
should be as model-independent as

possible’. Furthermore, ‘the ultimate goal is
to convert data into information and then
information into knowledge. Knowledge
discovery by exploratory data analysis is
an approach in which the data “speak for
themselves” after a statistical or visualiza-
tion procedure is performed’ (Brown and
Botstein, 1999). We might add ‘…by
computer’ and convey the flavour of the
more ambitious bioinformaticists or bio-
informaticians. Their Latin tag might be
ex silica et data veritas.

The philosophical approach implicit in
the idea of converting ‘data into information
and […] information into knowledge’ is
logical induction (Allen, 2001). Induction
is the process of reasoning from the
particular to the general. As a process
comparable to deduction, it was discredited
by David Hume in the 18th century and by
Karl Popper in the 20th (Popper, 1972).
Induction is not logical; it does not work.
Here, I suggest that Brown and Botstein
have not done what they think they have
done. I intend no offence either to the
investigators or to the potential of their
marvellous technique. It is the philosophy
that is wrong, not the science. But that
can be the more damaging.

Consider the seminal paper of Eisen et al.
(1998). For a large beautiful microarray the
figure legend reads: ‘Data from separate
time courses of gene expression in the
yeast S. cerevisiae were combined and
clustered. Data were drawn from time
courses during the following processes:
the cell division cycle after synchronization
by α-factor arrest (8 time points); centrifugal
elutriation (14 time points), and with a
temperature-sensitive cdc15 mutant
(15 time points); sporulation (7 time
points plus four additional samples);
shock by high temperature (6 time points);
reducing agents (4 time points) and low
temperature (4 time points); and the
diauxic shift (7 time points)’.

These experimental conditions were
hardly selected at random. Even if the
hypotheses being tested were only weak
and ill-defined ones, they were there.
There were reasons for expecting that

something interesting would show up. If
not, the chemical treatments might just as
well have used reagents chosen at
random. If you have no background

knowledge at all, two profiles might just
as well be selected from human tissue
‘before and after listening to Verdi’
(Brazma et al., 2000). Or, to be truly ‘as
model-independent as possible’, why not
assess the effect of Italian opera on yeast,
too? Actually, Ferea et al. (1999) chose
instead to look in more detail at the long-
term consequences of glucose-depletion—
far more sensible. Their results are fasci-
nating, and summarised as: ‘Alterations in

gene expression projected onto metabolic
maps of central carbon metabolism’
(Ferea et al., 1999). The results show that
gene expression responds, over many
generations, to starvation, so that less
glucose is fermented and more is respired.
The conclusion is intuitively satisfying,
and not at all something ‘we neither knew
nor expected’ (Brown and Botstein,
1999). Furthermore, it is difficult to
believe that the computer program that
performed the ‘statistical or visualization
procedure’ (Brown and Botstein, 1999)

rediscovered glycolysis and the tricarb-
oxylic acid cycle for itself. The conclusion
of Ferea et al. (1999) looks suspiciously
like background biochemistry plus
human intuition. None the worse for that.

Protein structure prediction is another
important and interesting area where it is
sometimes claimed that computers have
all the answers. In principle, there are two
ways in which we might predict a
protein’s three-dimensional structure
from its amino acid sequence. These are
empirical association or correlation, and
ab initio calculation.

The first method, empirical association,
is to catalogue all known sequences and
their corresponding structures, and then
to compare any new sequence with the
catalogue to see if it contains motifs
associated with a particular fold or protein
domain. There are many different
approaches, and ways of weighting differ-
ent motifs. Chemical properties of amino
acids may be included as ab initio input.
These approaches are mostly straightforward
induction, and would have been recog-
nized as such by Hume. He would also
have seen at once that there can be no
guarantee that the new sequence will
conform to expectations based on previous
experience. Some success has been
achieved, however.

For example, programs such as TopPred
and its successors predict membrane-
spanning helices of intrinsic membrane
proteins (Claros and von Heijne, 1994).
However, there are underlying assumptions
that are incorrect in many cases. For exam-
ple, the hydrophobic, intrinsic-membrane
protein, chloroplast light-harvesting
complex II (LHC II), has three membrane-
spanning α-helices (Kühlbrandt et al.,
1994). Yet TopPred predicts, with a high
degree of confidence, that LHC II is not a
membrane protein at all. The explanation
is that two of the three helices each
contain two polar, charged amino acid
residues—glutamate and arginine—that
cannot be accommodated into a hydro-
phobic helix, according to the assumptions
of the program. In reality, the opposing
charges on these residues compensate for
each other, and provide two strong, ionic
interactions that hold the two helices

together in the membrane (Kühlbrandt et
al., 1994). Another interesting example is
porin (Cowan et al., 1992). TopPred pre-
dicts, correctly, that porin is a membrane
protein, but for the wrong reason. What
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appears to TopPred as a single membrane-
spanning helix is, in fact, membrane
extrinsic. What TopPred predicts as
extrinsic to the membrane, because of
low helix probability and hydrophobicity,
is porin’s large, anti-parallel β-barrel. The
explanation is that TopPred is designed to
look for hydrophobic α-helices. The β-barrel,
however, forms a membrane-spanning
channel that is hydrophobic on the out-
side, but has a hydrophilic inner surface.
TopPred is blind to these novel and
interesting features of porin.

The second method for prediction of
protein structure, ab initio calculation, is
an interesting case of in silico veritas.
There is a prevalent view that we already
know enough about amino acids and that
it is insufficient raw computing power that
now prevents us from predicting three-
dimensional protein structure. Conse-
quently, solving the protein-folding prob-
lem is the next benchmark for supercom-
puters. It would be brave to pronounce on
the outcome. From my own viewpoint I
do not understand, in principle, how there
can be a single, unique solution, arrived at
completely ab initio, for the three-dimen-
sional structure of a dipeptide. So much
depends upon concentration, the solvent
(if any), other solutes, physical parameters
such as temperature and pressure and so
on. In addition, there is surely no single
structure for any quantity of dipeptide
greater than a single molecule, at least in
solution. And, apart from an astronomically
increased number of possible interactions, a
‘real’ protein has a history, and may fail to
adopt its functional tertiary and quater-
nary structure without the intervention of
molecular chaperones, particularly in a
living cell. I certainly do not object to the
reductionist agenda of describing the
structure and function of a protein in
terms of the properties and interactions of
its constituent amino acids—this is what
we do. And, obviously, we will not get
very far without computers to help us.
Computers are necessary to analyse large
data sets, but they are not sufficient—and
their sufficiency is precisely what some
influential voices now claim.

Creativity consists of a willingness to
consider the relevance of observations
that have no apparent connection with
the problem as it is viewed conventionally.
Look back at any great discovery in
science, and you will see a leap of
imagination. Darwin was willing to

consider the breeding and domestication
of pigeons as something to connect with
biogeographical distribution of animals
and plants, and with the fossil record. The
orthodox assumption of the immutability
of species did not fit, and therefore had to
go. Mendel clearly began his experiments
with a view that inheritance might be
particulate, and that each parent contrib-
uted equally and independently to the
particles of inheritance of the offspring.
There was no prior evidence for that.
Einstein was able to pursue the idea that
there is no medium, or ether, through
which light travels, and thus that the
velocity of light is constant while all other
motion is relative. Crick and Watson built
on the implausible inference that genes
were made of nucleic acid. They also had
the tenacity to think that the chemical
structure of DNA might in some way
explain both Mendel’s particles of inherit-
ance and the X-ray diffraction patterns by
Franklin and Wilkins.

Does creativity require something that
computers do not possess? I think it does. We
might mention vision, imagination, intellec-
tual ambition even arrogance. It is impossi-
ble to understand the motive for creativity
unless it includes dissatisfaction with con-
ventional wisdom. Bringing together what
orthodoxy regards as completely irrelevant
factors also requires personal courage. After
all, a scientist’s career and reputation may
depend upon a good or bad decision about
what counts as relevant.

And computers? Even the best are dull,
myopic and literal-minded devices. We
say a computer ‘has a mind of its own’
when we have forgotten, or not under-
stood, what we told it to do. At present,
computer programs are iterative cycles of
deduction, based on feedback from
results and initiated at random or by what
the user considers as relevant background
knowledge. The program cannot decide
this for itself. But there are ever more
niches for what computers can do, and
they will continue to surprise us. ‘The
Semantic Web’ (Berners-Lee et al., 2001)
is an intriguing vision that may produce a
plausible impression of inanimate discovery
of new knowledge. And we already have
conventional computers that will learn
from experience. The best of them can
even beat the world’s best chess player—
and especially at chess.

We shall see. I think the title of this
article and its first paragraph may be a

case in point. A computer precis of
in silico veritas will be an interesting
piece of evidence. But at least, and in
contrast to the computer, a human will
now be clear about where I stand. Useful
as they may be at programmed explora-
tion of patterns in data, I hope it is neither
reactionary, nor incurably romantic, to
suggest that computers do not yet have
what it takes to make discoveries for us.
And they certainly cannot tell us what it is
that we need to understand.
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